Estimation of Object Spectral Content Using Phase Diversity

Matthew R. Bolcar and James R. Fienup
The Institute of Optics, University of Rochester, Rochester, NY 14627
bolcar@optics.rochester.edu

Abstract: We present a method of estimating object spectral content using phase diversity with a
grey-world assumption. Operation of a multi-aperture system is simulated, using sub-aperture
piston phase diversity.

©2007 Optical Society of America

OCIS Codes: 100.5070 Phase Retrieval; 110.6770 Telescopes; 300.0300 Spectroscopy

1. Introduction
Conventional methods of phase diversity using known focus errors have been applied to monolithic and multi-
aperture systems as a means of wavefront sensing and image reconstruction [1,2]. Further work as been done to
utilize the unique architecture of multi-aperture systems to introduce known piston errors in some of the sub-
apertures as the phase diversity function [3].

More recent work has shown that phase-diversity algorithms can be adapted to account for the broadband
nature of many objects of interest [4]. In this paper, we build on this work to estimate system phase errors as well as
object spectral content using broadband phase-diversity algorithms.

2. Digital Simulations
Equation (6) in Ref. [4] gives the broadband, grey-world (i.e., spectrally-spatially separable) likelihood metric that is
maximized by the phase-diversity algorithm. Digital simulations evaluated the performance of the phase-diversity
algorithm in estimating the unknown phase errors, α, and the grey-world spectral coefficients, Φ_λ, simultaneously.

Sub-aperture piston phase diversity was simulated on a tri-arm 9 multi-aperture system. The nature of the
diversity was such that for each image, the piston value for each sub-aperture was random, but known. For example,
for the first diversity image, the sub-apertures had random piston values between -17.2λ and 10.6λ; for the second
diversity image, the sub-apertures had random piston values between -14.6λ and 16.6λ, and so on.

The object used for this study was taken from a set of AVIRIS data [5] and down-sampled to a spectral
resolution of 48 nm. A bandwidth of 336 nm around a center wavelength of 1 μm was evaluated. The average
simulated wavefront error was approximately 0.30λ RMS of both low-order sub-aperture aberrations and global
aberrations including astigmatism, coma and spherical. Photon and read noise were included for an average pixel
SNR of approximately 260. We successfully reconstructed, along with the phase errors, the spectral content of the
scene, as shown in Figure 1(d).

Figure 1 – (a) Example object (single-band), (b) phase map of pupil errors in units of μm OPD, (c) example raw diversity image, (d)
average pixel grey-world spectrum (solid line) and estimated grey-world spectrum (dashed line).

3. References