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ABSTRACT 

Hyperspectral imaging for remote sensing has prompted development of hyperspectral image projectors that can be used 
to characterize hyperspectral imaging cameras and techniques in the lab.  One such emerging astronomical hyperspectral 
imaging technique is wide-field double-Fourier interferometry.  NASA’s current, state-of-the-art, Wide-field Imaging 
Interferometry Testbed (WIIT) uses a Calibrated Hyperspectral Image Projector (CHIP) to generate test scenes and 
provide a more complete understanding of wide-field double-Fourier interferometry.  Given enough time, the CHIP is 
capable of projecting scenes with astronomically realistic spatial and spectral complexity. However, this would require a 
very lengthy data collection process.  For accurate but time-efficient projection of complicated hyperspectral images 
with the CHIP, the field must be decomposed both spectrally and spatially in a way that provides a favorable trade-off 
between accurately projecting the hyperspectral image and the time required for data collection.  We apply nonnegative 
matrix factorization (NMF) to decompose hyperspectral astronomical datacubes into eigenspectra and eigenimages that 
allow time-efficient projection with the CHIP.  Included is a brief analysis of NMF parameters that affect accuracy, 
including the number of eigenspectra and eigenimages used to approximate the hyperspectral image to be projected.  For 
the chosen field, the normalized mean squared synthesis error is under 0.01 with just 8 eigenspectra.  NMF of 
hyperspectral astronomical fields better utilizes the CHIP’s capabilities, providing time-efficient and accurate 
representations of astronomical scenes to be imaged with the WIIT. 

Keywords: nonnegative matrix factorization, wide-field imaging interferometry testbed, hyperspectral image projector, 
spatio-spectral, double-Fourier, NMF, WIIT, CHIP 
 

1. INTRODUCTION 
Hyperspectral imaging is an important modality for the identification and classification of objects and materials within a 
scene. In particular, the astrophysics community relies on hyperspectral measurements to make inferences about, and 
develop models of, distant astronomical objects. Although ground-based interferometric measurements are in 
widespread use among astrophysicists, single-aperture telescopes remain the main source of space-based hyperspectral 
measurements. There will come a time, however, when a monolithic aperture will be unable to meet the demands for 
high spatial resolution astronomical imagery due to excessive cost, weight, and size, especially at infrared wavelengths. 
This is when space-based observatories will likely employ wide-field spatio-spectral, or double-Fourier, interferometry. 
The mathematical framework for and fairly detailed descriptions of a spatio-spectral interferometer have already been 
published1-5, so the following will be only a brief introduction into double-Fourier interferometric imaging. 

Spatio-spectral interferometry is an extension of Fourier transform imaging spectroscopy6 (FTIS) using aperture 
synthesis to obtain higher spatial resolution than with conventional FTIS. In FTIS, an input beam is split into two arms 
of an interferometer before being recombined and focused onto an array detector with an imaging lens. One arm of the 
interferometer has a fixed optical path, while the other has a scanning mirror that can vary the optical path difference 
(OPD) between the two arms of the interferometer, resulting in a measured datacube consisting of two spatial 
dimensions and one delay dimension. A hyperspectral image cube is then obtained by taking the Fourier transform over 
the delay dimension of the datacube. Spatio-spectral interferometric imaging, however, requires two apertures with a 
vector separation, called the baseline, instead of a single aperture followed by a beam splitter. The optical path following 
one of the mirrors is kept fixed while the other can vary, resulting in a measured datacube for each baseline separation. 
Taking the Fourier transform of these datacubes over the delay dimension results in a set of high-pass filtered images, 
where the passband in the spatial frequency domain is related to both the baseline and wavelength7. A single high-
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spatial-resolution hyperspectral image can be recovered from the set of high-pass filtered images using an image 
synthesis algorithm, such as the algorithm developed by Lyon et al.4,5. 

Although the theoretical groundwork for double-Fourier interferometry has already been established1-5, the space-based 
spatio-spectral interferometric imaging technique needs further characterization before an interferometric observatory, 
such as the NASA proposed Space Infrared Interferometric Telescope (SPIRIT)8, ever becomes a reality. This prompted 
NASA to build the Wide-field Imaging Interferometry Testbed (WIIT)9-20. The WIIT was developed by NASA to further 
the maturation of wide-field spatio-spectral interferometry in order to meet the demands of future astronomical 
hyperspectral imaging missions. The testbed is a scale model of a space-based wide-field spatio-spectral interferometer, 
but operating at visible wavelengths, for which measurements are limited primarily by detector photon noise. The light 
source for the interferometer, which has been integrated into the WIIT, is a Calibrated Hyperspectral Image Projector 
(CHIP)20. 

Hyperspectral image projectors (HIPs) were developed by the Optical Technologies Division at the National Institute of 
Standards and Technology to solve the problem of testing and characterizing hyperspectral imaging techniques with 
known hyperspectral scenes21-23. These projectors allow for a scene to be displayed such that every object in the scene 
has the same arbitrary spectrum, resulting in a spatially-spectrally separable image at any given time. This is achieved 
using two digital light processing (DLP) units. One of the DLP units determines the gray-scale spatial distribution of the 
image being projected. The other unit controls the shape of the arbitrary spectrum, which is achieved by spectrally 
dispersing a broadband source onto the DLP such that each row of the DLP chip controls the relative strength of each 
wavelength bin of the output spectrum. The number of wavelength bins and the spectral range together determine the 
spectral resolution of the HIP’s spectral output. A hyperspectral image can then be simulated with a HIP by cycling 
through multiple spatially-spectrally separable images that can be added together throughout the integration time of the 
camera to simulate the measurement of a spatially-spectrally complicated hyperspectral image. A calibrated HIP, such as 
NASA’s CHIP, is constructed by including a fiber-coupled spectrometer into the design such that the spectral output of 
the projector can be monitored20. Combined, the WIIT and the CHIP provide a controlled means of probing the 
intricacies of spatio-spectral interferometry in a shot-noise-limited regime. 

In this paper, we describe how the CHIP will be used to obtain interferometric measurements of realistic astronomical 
test scenes from the WIIT in a time-efficient manner. In Section 2 we will motivate how the CHIP can expedite the 
measurement of spatially-spectrally complex images in combination with the data decomposition technique known as 
nonnegative matrix factorization (NMF). A brief introduction to NMF and how it applies to hyperspectral image 
decomposition is included in Section 3. The result of decomposing an astronomically realistic test scene as a function of 
the number of images through which the CHIP must cycle to represent the scene is presented in Section 4, followed by 
concluding remarks in Section 5. 

2. Time-efficient WIIT data collection using CHIP 

The WIIT is invaluable for demonstrating the effectiveness of double-Fourier interferometric imaging, but the data 
collection process for test scenes of moderate spatial and spectral complexity can be quite lengthy. To start, there are 
aspects to the data collection process that are intrinsic to the technique that cannot be altered. For example, the sample 
spacing of the OPD dimension limits the range of spectral frequencies in the reconstructed hyperspectral image, and the 
range of the delay line limits spectral resolution of the recovered image. This means the number of delay line positions 
for a single baseline is predetermined. In the same regard, the number of baseline measurements required to fully 
measure the spatial frequency domain, or u-v space, is dependent on both the maximum baseline length and the size of 
the individual apertures of the interferometer. One could use sparse sampling to reduce total measurement time, but we 
are assuming a general object that may not be conducive to sparse sampling. On the other hand, an aspect of the system 
over which we do have control is the integration time of the camera for each delay line position. Because datacubes are 
collected for many baselines, and many delay line positions are required for each datacube, decreasing the integration 
time for each delay line position will result in a large reduction in total data collection time for the WIIT. When 
experimentally simulating the measurement of hyperspectral images, however, the integration time is intimately related 
to implementing hyperspectral scene generation with the CHIP.  

Recall that the CHIP generates a hyperspectral image by cycling through multiple spatially-spectrally separable images 
that can be added together throughout the integration time of the camera to simulate the measurement of a spatially-
spectrally complicated hyperspectral image. Imagine a simple scene with two astronomical objects having different 
spectra on a blank background. For this simple scene, the CHIP would have to display the image of one object with its 
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spectrum, followed by the image of the second object with its different spectrum. As the number of objects with different 
spectra gets larger, the number of images through which the CHIP has to cycle grows proportionally until the number of 
spectrally diverse objects is the same as the number of spectral bins of the CHIP. At that point, one could just cycle 
through all of the CHIP’s spectral bins independently. There is another option, however, that provides a trade-off 
between the number of images through which the CHIP cycles and how accurately the projected image matches the 
original hyperspectral test scene, in a manner similar to principal component analysis (PCA). Unfortunately, PCA on an 
arbitrary hyperspectral image will result in eigenspectra and eigenimages, sometimes referred to as abundance maps, 
with negative values, which we cannot represent using the CHIP. Nonnegative matrix factorization (NMF) is similar to 
PCA except all values in the eigenspectra and eigenimages are restricted to be nonnegative, so it can be used to 
decompose hyperspectral test scenes for the CHIP. The idea for time-efficient projection using the CHIP is to 
decompose the test scene into as few eigenimages and eigenspectra as possible while maintaining a specified accuracy 
between the projected image and the original test scene. 

3. Hyperspectral Image Decomposition using NMF 

NMF is the process in linear algebra of approximating an arbitrary nonnegative ×n m matrix A by decomposing it into 
the product of two smaller nonnegative matrices W and ,H with sizes ×n p and ,×p m  respectively, expressed as  

 .≈A WH   (1) 

The goal is to keep the size of p as small as possible while maintaining an accurate representation of the original matrix 
A, which is analogous to PCA with the exception that all three matrices are restricted to have nonnegative values. Most 
algorithms for NMF, including both the multiplicative update algorithm24,25 and the alternating least squares 
algorithm25,26, are based on iteratively reducing some cost function, usually the square of the Frobenius norm of the 
residual matrix: 

 ( ) 22

,
.mnF

m n
A WH A WH− = −∑   (2) 

The results shown later in this paper employ the alternating nonnegative least squares algorithm using projected gradient 
methods26 to minimize this cost function because of its speed and consistency. Due to the imperfect data compression 
associated with approximating the matrix A with fewer than nm elements, all NMF optimization routines suffer from 
many local minima. This means that the starting values of W and H are important for finding a good solution. Instead of 
trying many random starting points and choosing the best result, we have found that applying nonnegative double 
singular value decomposition27 to A provides an initial estimate that consistently outperforms the random guess method. 
The stopping criteria are related to the norm of the projected gradient as well as a maximum number of iterations. Figure 
1 is an attempt to visualize how Eq. (1) applies to a hyperspectral image. The left side of Fig. 1 shows the original 
hyperspectral image and the right side shows how it can be approximated by summing over a sequence of spatially-
spectrally separable images, represented as eigenspectra (top) and eigenimages (bottom). We can now discuss how to 
apply NMF to a hyperspectral image to obtain the plots and images on the right side of Fig. 1. 

Adapting NMF for decomposition of a hyperspectral image into eigenspectra and eigenimages relies on array 
manipulations, which are simple tasks for computing languages such as Numpy/Python and Matlab. A hyperspectral 
image is often thought of as a three-dimensional array where two dimensions correspond to spatial coordinates and the 
other to the spectrum, but we can reshape the three dimensional array into a two-dimensional array such that the two 
spatial coordinates are collapsed down to a single dimension. This means that a hyperspectral image of size × ×j k l  is 
reshaped to size ,×j kl where j indexes the spectral dimension and k and l are pixel indices. The result is an array that 
describes the spectrum for each image pixel and can now be assigned to the matrix A in Eqs. (1) and (2) such that =m k  
and .=n kl After applying NMF to the hyperspectral matrix A, the p columns of W will be the computed eigenspectra 
and the p rows of H will contain the corresponding eigenimages. In order to visualize the eigenimages, we must reshape 
the matrix H from size ×p kl  to .× ×p k l  The eigenspectra now correspond to the spectral weightings applied to one of 
the CHIP’s DLPs, while the eigenimages become the 8-bit gray scale images applied synchronously to the other DLP. 
Because spatially-spectrally complicated hyperspectral images can be decomposed into a handful of eigenspectra and 
eigenimages suitable as inputs for the CHIP, NMF is a natural solution to the problem of decomposing complicated 
hyperspectral images so that time-efficient data collection can be performed with the WIIT.  

Proc. of SPIE Vol. 9611  96110Y-3

Downloaded From: http://spiedigitallibrary.org/ on 05/24/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



Spectral Average of Hyperspectral Image
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Figure 1. An illustration of Eq. (1) showing how a hyperspectral image (left) can be approximated by the sum of various 

spatially-spectrally separable images (right), with the eigenspectra on top and the associated eigenimages on the 
bottom.  

4. Results for an astronomically realistic test scene 

The hyperspectral test scene used for our simulations was one of a handful created by NASA to demonstrate the viability 
of a space-based double-Fourier interferometer for future far-infrared (FIR) missions, such as SPIRIT8, because high 
resolution images of the FIR sky do not yet exist. The chosen test scene, a panchromatic image of which is shown in Fig. 
2, is a deep field image comprised of many spectrally varying sources and possesses the most spatial-spectral complexity 
of any of the test scenes generated by NASA. This is optimal for demonstrating NMF decomposition because it will 
require the most eigenspectra (the largest value of p) to accurately represent the complexity of the test scene. The 
dimensions of the test scene are 376 375 375j k l× × = × × . 

 
Figure 2. Spectral average of the simulated far-IR hyperspectral image to be decomposed (stretched to 0.25 power to show 

more faint spatial detail). 

In order to perform time-efficient data collection as discussed in Section 2, we want to decompose the deep field image 
into as few eigenspectra as possible while maintaining adequate spatial/spectral complexity. We compare the results of 
the NMF estimated image with the input image using the normalized mean squared error (NMSE), which is a normalized 
version the cost function used by the NMF algorithm: 
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We performed NMF as described in Section 3 for integer values of p ranging from 4 to 15, and more sparsely sampled 
for values of p out to 100. Figure 3 is a plot of the NMSE as a function of p, showing that as few as 8 eigenspectra 
represents the original test scene with an NMSE < 0.01, about 27 eigenspectra represents the scene with an NMSE < 
0.001, and about 58 eigenspectra produce an NMSE < 0.0001. The spectral average of the estimated hyperspectral image 
for p = 8 is shown in Fig. 4; it is visually similar to Fig. 3. 

 
Figure 3. Plot of normalized mean squared error versus the number, p, of eigenspectra fitted by the NMF algorithm. 

 
Figure 4. Spectral average of the decomposed far-IR hyperspectral image produced by NMF algorithm for p = 8 (stretched 

to 0.25 power). 

As expected, the NMSE between the original and decomposed image monotonically decreases as the number p of 
recovered eigenspectra increases. We can expect that the NMSE will continue to decrease, approaching zero as either the 
value of p reaches the number of spectral bins in the test image, 376 in this case, or as the value of p reaches the total 
number sources with unique spectra. Figure 5 shows the reconstructed eigenspectra and eigenimages corresponding to 
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the approximated panchromatic image in Fig. 4. The first eigenspectrum and eigenimage recovered by the NMF 
algorithm in Fig. 5 are nearly identical for all values of p because together they describe the background radiation 
contributing energy to every pixel in the scene. The shape of the remaining eigenspectra and eigenimages are dependent 
on the value of p. 

 
Figure 5. Eigenspectra and eigenimages (stretched to 0.3 power) produced by the NMF algorithm for p = 8. 

Figure 6 shows the spectral average of the residual images, ,−A WH  for various values of p between 6 and 50 along with 
their associated NMSE values. Bright and dark features in the residuals correspond to spectral sources that are under-
estimated and over-estimated, respectively. Notice that as the value of p increases, the NMF algorithm tends to improve 
the brightest and darkest spatial features, which contribute the most energy to the residual images. This is what we 
should expect because the algorithm is minimizing the Frobenius norm of the residual images, as discussed in Section 3. 
The remaining spatial features in the residual images likely have sharp spectral signatures not shared by the majority of 
astronomical sources within the scene. 
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Figure 6. Spectral average of the residual hyperspectral image as the number of estimated eigenspectra varies from p = 6, 8, 

14, 20, 30, 50. Note the difference in colorbar values. 

5. Conclusion and Future Work 

NMF has been applied to an astronomically realistic test scene that will be used by NASA’s CHIP and WIIT for further 
characterization of double-Fourier interferometric imaging. We demonstrated that the NMSE between the original and 
decomposed hyperspectral image decreases monotonically as a function of the value of p, dropping below 0.01, 0.001, 
and 0.0001 for as few as 8, 27, and 58 eigenspectra and eigenimages, respectively. 

Before the eigenspectra and eigenimages can be supplied to the CHIP, however, they both must be converted to 8-bit 
values limited by the DLP, reducing how accurately the CHIP can represent the original test scene. As a result, it would 
be better to include this information into the optimization algorithm in order to reduce quantization error. The quality of 
the approximated image might also be improved by choosing new starting guesses for the NMF algorithm from the 
eigenspectra and eigenimages found for larger values of p. However, the most important aspect of future work is the 
measurement of the decomposed hyperspectral image experimentally with the WIIT. 
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